BRIEF COMMUNICATION: Ad libitum fodder-beet and pasture beef-finishing systems – intake, utilisation, grazing behaviour and liveweight gains

B Saldias1,2 and SJ Gibbs3*

1Seed Force Ltd, 24 Gallagher Drive, Hornby 8042, Christchurch, New Zealand; 2Vetlife Centre for Dairy Excellence, 20 Wilson St, Geraldine 7930, South Canterbury, New Zealand; 3Faculty of Agriculture Science, Lincoln University, PO Box 85084, Canterbury, New Zealand.

*Corresponding author. Email: Jim.Gibbs@lincoln.ac.nz

Keywords: Fodder beet; beef-production system; ad libitum fodder beet

Introduction

Traditionally, New Zealand (NZ) beef-production systems rely almost solely on pasture production. However, the seasonality of pasture growth, which affects quality and quantity, impacts the productivity of the system, with mean slaughter age of 26-36 months. In accelerated beef-finishing systems internationally, cereal grains are used to maintain energy intakes across the production cycle, at a lower cost than is possible in NZ. A recent NZ development in beef-production systems involves ad libitum intakes of fodder beet (FB; Beta vulgaris) with minimal supplement for 130 d from weaning to spring, and then 90 d of grazing on grass-based pasture before slaughter. This system, developed by Gibbs at Lincoln University, allows finishing of spring born animals at 12-18 months of age (Gibbs et al. 2015; Gibbs & Saldias 2014a). Ad libitum intakes after appropriate transition to FB are critical to system profitability, and prevention of rumen acidosis (Gibbs & Saldias 2014b). However, previous NZ crop-feeding experience with brassicas suggests that increased intakes require reduced utilisation of feed (Rugoho 2013). There is no published information on FB utilisation in ad-libitum systems, where high pasture residuals at 24 h post-allocation are used to ensure maximal intakes. Therefore, this study was designed to determine utilisation, grazing behaviour and intake patterns, and liveweight gains, in steers grazing FB and then spring perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) based pasture.

Materials and methods

The study was conducted on a commercial beef-finishing operation in Canterbury New Zealand from autumn to spring 2015. Ad libitum intakes, utilisation, grazing behaviour, intake patterns and liveweight gains were compared on a FB crop (cv. Brigadier, Seed Force) and white clover (cv. Impact, Heritage Seeds) based pasture. In each experimental period, a FB pre-yield assessment was carried out as described by Gibbs et al. 2015, and pasture mass was calculated using a rising-plate meter at each sampling day to quantify daily allocations. Samples of FB (bulb and leaf) and pasture samples were collected at each sampling period for dry matter (DM) and feed composition analysis. Duplicate samples for DM% assessment were oven dried at 65°C until constant weight, and samples for feed composition were freeze dried, ground to 1 mm and analysed by wet chemistry. The utilisation of daily FB allocation was measured four times between June and September 2015. Weights (total DM) at 24, 48, 72 h and then 30 d after grazing were obtained each time from five randomly selected replicates of 4 m² each, for each of the time periods after grazing. In spring, the process was repeated with steers on pasture with mass estimated by a rising-plate meter, using repeated, randomised, diagonal transects to generate between 150 and 200 individual estimates from each allocation plot before grazing and at each time period after grazing.

Grazing behaviour of 15 randomly selected and identified animals in the mob were recorded on two occasions each on FB and on pasture, 48 h apart. Grazing events were recorded every five minutes by visual observation using trained observers from 0600 to 1900 h and every 10 minutes from 1900 to 0600 h. Fodder beet DM disappearance pattern was measured 6 h after grazing, on each of two separate days. All plants in five identified 4 m² replicates in the daily allocation were weighed and replaced, then re-weighed 6 h after grazing, for leaf and bulb independently. Live weights of all animals were recorded at the start and finish of both the fodder-beet-crop and spring-pasture-grazing periods.

Calculations

Dry matter utilisation of FB was calculated by the following formula:

\[
\text{DM utilisation (\%)} = \left( \frac{\text{pre} - \text{post DM yield}}{\text{pre yield}} \right) \times 100
\]

Apparent DM intake was used to describe %DM disappearance pattern of total plant, bulb, leaf and spring pasture, calculated from the DM disappearance of each individual component of the FB plant or the total herbage mass of the pasture between pre- and post-grazing herbage mass at 6 h after grazing. Diurnal-grazing-behaviour means were calculated for all 15 identified steers, and LWT gains...
were calculated by the entry and exit LWT to the fodder beet crop and the spring pasture.

Results and discussion

**Utilisation, intake and grazing behaviour**

The feed composition of both diet treatments is presented in Table 1. Cattle were stocked at 23.6/ha on FB and 6/ha on pasture for 130 d and 75 d, respectively. Dry matter utilisation of FB crop after 24 h was 72.7% ± 0.1, 83.7% ± 0.1 at 48 h, 94.1% ± 0.0 at 72 h and 97.6% ± 0.0 at 30 d, which accord with the intended 25% residual at 24 h that system is designed to provide (Gibbs & Saldias 2014a), to drive high intakes across the autumn and winter period. Fodder beet utilisation at 72 h reported in this study was higher than previous reports of final utilisation for alternative winter crops for cattle, in which intakes were not deliberately restricted, with reported kale utilisations of 75-84% (Stephen & McDonald 1978), 77-90% (Muir et al. 1995), and 86.8% (Rugoho 2013), and reported swede utilisation of 82% (Thompson & Stevens 2012) in dairy cows.

High intakes of fodder beet were observed, with mean daily intake calculated at 8.71±1 kg DM/steer at the final September assessment. With a mean LWT of 434 ± 2.9 kg/steer, this is approximately 2.02% LWT daily DM intake, and the corresponding 130 d mean daily LWT gain was 1.01 ± 0.1 kg. On pasture, the mean daily intake was 11.23 kg in October (approximately 2.25% LWT/day), and for 75 d the mean daily LWT gain was 1.2 kg ± 0.3. Mean daily grazing time on FB was similar at 7.1 h compared with pasture at 7.8 h, with almost half of this within the first 6 h (47.1 and 45.4%, respectively) in both treatments. Total LWT gain per hectare was calculated at 3295 kg in the FB period, and 527 kg in the pasture period.

**Dry matter disappearance of fodder beet and pasture**

Despite the similar proportions of daily grazing in the first 6 h, total DM disappearance of FB at 6 h was 68.7% of 24 h intake compared with 76.6% on pasture. For the FB, this is much lower than previous reports by Jenkinson (2013) (90 ± 5.4%) for dairy cows fed FB, and Rugoho (2013) (95.7-97.6%) for dairy cows fed kale, both on restricted allocations, but similar to other reports of strip-fed cattle on pasture (Dobos et al. 2009). While the previous methodology of daily allocation assessment of beet and kale crop does have significant flaws due to uncontrolled crop variation and may be unreliable, it seems unlikely this alone accounts for the strong differences. Unrestricted allocation of FB may result in a more diffuse diurnal grazing pattern, with evidence for this in the observed differences in grazing after and before twilight in FB (1h) and pasture (0.4h) treatments. In addition, the trained observers noted that the herd generally grazed the residuals in the beet paddock that were distant from the daily strip-allocation in the dark, In a concomitant study on the same fodder beet feeding system, using rumenally-fistulated, co-grazing steers (Prendergast & Gibbs 2015), similarly high intakes were associated with higher rumen pH than those in the pasture-fed control, and evidenced a different pattern of diurnal pH to steers fed restricted fodder beet intakes. This is the first report of this different distribution of intake diurnally, in satisfactorily transitioned cattle fed FB ad libitum, and may help explain both the high intakes and production, and the absence of rumen pH impact from a diet rich in rapidly fermentable sugars.

**Conclusions**

Weaner beef steers fed FB ad libitum over winter with 1 kg DM/steer of pasture daily were observed to achieve very high final utilisation (>95%) while maintaining daily intakes above 2% of LWT, daily LWT gains of 1.01 kg and producing 3295 kg LWT gain/ha for 130 d from April to
September. Ad-libitum fodder beet intakes did not result in poor utilisation, and appear to extend diurnal grazing patterns.

Acknowledgements

The authors thank Brent and Anna Fisher of Silverstream Charolais for the facilities and assistance, and Dr. Terry Hughes of RCL Consulting for all his input in the development and analysis of this work.

References


