Bovine tuberculosis (BT) is an infectious disease caused by the *Mycobacterium bovis* that affects humans and several mammalian species. BT is important because it inflicts far-reaching economic losses to infected regions and because of its impact on public health. Epidemiological surveys were conducted in the State of Bahia between 2008 and 2010, with the objective of estimating the prevalence and assessing the spatial distribution of the disease. The state of Bahia was stratified into four regions, each of them representing a set of homogeneous epidemiological and demographic characteristics, referred to as production circuits. A total of 18,810 >2 years old cattle in 1,305 herds, ranging 320-370 herds per region and 20-40 cattle per herd, were randomly selected. A cervical comparative test was applied to each selected animal; reactive cattle and cattle with two consecutive inconclusive tests were considered BT-positive, whereas non-reactive cattle were considered BT-negative. Case-herds were those with at least one BT-positive result, whereas herds without BT-positive results were assumed to be control-herds. Latitude and longitude were recorded for each sampled herd using a generic Global Positioning System (GPS). The Cuzick-and-Edwards’ test was used to identify whether BT was spatially clustered. Herd-level prevalence, as indicated by the proportion of case-herds, was 1.6% (range 0.3-2.9% per region). No evidence of significant (P<0.05) spatial clustering was detected by the Cuzick-Edwards’ test at any of the assessed levels of neighborhood, which ranged from 1 to 10, most likely, due to the low disease prevalence. Results here suggest that BT is low prevalent in the State of Bahia and that disease prevalence is independent from spatially-structured factors.